On Vanishing Sums of Roots of Unity

نویسندگان

  • T. Y. LAM
  • K. H. LEUNG
چکیده

Consider the m-th roots of unity in C, where m > 0 is an integer. We address the following question: For what values of n can one find n such m-th roots of unity (with repetitions allowed) adding up to zero? We prove that the answer is exactly the set of linear combinations with non-negative integer coefficients of the prime factors of m.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tilings of the Integers, Vanishing Sums of Roots of Unity, and Cyclotomic Arrays

The thesis explores three different topics: tilings of the integers, vanishing sums of roots of unity, and cyclotomic arrays, which are all closely intertwined. On tilings of the integers, we prove two existence results for level semigroups and three different lower bounds on tiling periodicities. On vanishing sums of roots of unity, we solve an open problem of H.W. Lenstra [33]. On cyclotomic ...

متن کامل

Minimal Vanishing Sums of Roots of Unity with Large Coefficients

A vanishing sum a0 + a1ζn + . . .+ an−1ζ n−1 n = 0 where ζn is a primitive n-th root of unity and the ai’s are nonnegative integers is called minimal if the coefficient vector (a0, . . . , an−1) does not properly dominate the coefficient vector of any other such nonzero sum. We show that for every c ∈ N there is a minimal vanishing sum of n-th roots of unity whose greatest coefficient is equal ...

متن کامل

VANISHING SUMS OF mTH ROOTS OF UNITY IN FINITE FIELDS

In an earlier work, the authors have determined all possible weights n for which there exists a vanishing sum ζ1 + · · · + ζn = 0 of m th roots of unity ζi in characteristic 0. In this paper, the same problem is studied in finite fields of characteristic p. For given m and p, results are obtained on integers n0 such that all integers n ≥ n0 are in the “weight set” Wp(m). The main result (1.3) i...

متن کامل

Fields Generated by Linear Combinations of Roots of Unity

It is shown that a linear combination of roots of unity with rational coefficients generates a large subfield of the field generated by the set of roots of unity involved, except when certain partial sums vanish. Some related results about polygons with all sides and angles rational are also proved.

متن کامل

Fast Computation of Gauss Sums and Resolution of the Root of Unity Ambiguity

We present an algorithm for computing Gauss sums over Fq for large prime powers q. This allows us to find the exact values of Gauss sums in many previously intractable cases. The efficient computation of such Gauss sums up to multiplication with a root of unity is achieved by using Stickelberger’s factorization of Gauss sums, an application of the Fincke-Pohst algorithm, and fast arithmetic for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995